
Table Of Contents

DAQDRIVE Configuration Utility Appendix A

DAQDRIVE Tutorial Utility Appendix B

DAQ-16 .Appendix D

DAQ-801 / DAQ-802 . Appendix E

DAQ-1201 / DAQ-1202 . Appendix F

DAQP-12 / DAQP-16 . Appendix G

DA8P-12 .Appendix H

DAQ-1101 / DAQ-1102 . Appendix I

IOP-241 .Appendix M

DAQP-208 / DAQP-308 . Appendix N

DAQDRIVE User's Manual iii

(This page intentionally left blank.)

DAQDRIVE User's Manual iv

Appendix A: Configuration Utility

A.1 Introduction

Before DAQDRIVE can operate an adapter, a configuration file must be
generated to specify the hardware configuration of the adapter. Three
separate Windows based utility programs are provided on the
DAQDRIVE Installation diskettes to generate these configuration files.

1. DAQCFGW.EXE is a utility to edit DAQDRIVE hardware adapter
configuration files.

2. EXPBOARD.EXE is a utility to edit the data base defining available
A/D expansion boards and their configuration parameters.

3. SIGCON.EXE is a utility to edit the data base defining available
A/D channel signal conditioners and their configuration
parameters.

IMPORTANT:
The DAQDRIVE configuration utilities must be used to create
and /or edit the DAQDRIVE hardware configuration files.
Under no circumstances should the user attempt to create and /
or edit DAQDRIVE hardware configuration files directly.

DAQDRIVE User's Manual A-1

A.2 Software Installation

The DAQDRIVE Configuration Utilities; DAQCFG, EXPBOARD, and
SIGCON are installed into the DAQDRIVE\CONFIG directory by the
DAQDRIVE installation program when the “Standard Installation” or the
“Install Configuration Utility and Tutorial” option is selected. Consult the
Software Installation section of the DAQDRIVE User’s Manual for
additional information.

DAQCFG does not allow the creation of new hardware configuration data
files, but instead requires all files to be a modified version of an existing
data file. The DAQDRIVE installation program installs the necessary
sample hardware configuration data files (.DAT), and their associated
report files (.RPT), into the DAQDRIVE\CONFIG directory along with
the configuration utilities.

CAUTION:
Older versions of DAQDRIVE may not be compatible with
files generated by the latest configuration utilities.

A-2

A.3 Generating A DAQDRIVE Configuration File

A.3.1 Starting The Configuration Utilities

To execute the DAQDRIVE configuration utility, simply double click on
the configuration utility icon located in the DAQDRIVE program group.

A.3.2 Opening A Configuration Data File

DAQCFG does not allow the creation of new data files but instead
requires all files to be a modified version of an existing data file (*.DAT).
For this reason, one or more sample data files are provided on the
DAQDRIVE installation diskettes. To view and / or edit a configuration
data file:

1. Select File, Open

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of an existing configuration data file (.DAT) in the
file name text box or select the file from the corresponding list box.

4. Choose OK.

A.3.3 General Configuration

The following configuration options are available from the Hardware
Setup menu:

v General
v A/D Converter
v A/D Expansion Boards
v A/D Signal Conditioners
v D/A converter
v Timer
v Digital I/O
v Configuration Help

To select a subsystem for configuration, either select it from the Hardware
Setup menu or click the associated toolbar icon. If a specific subsystem is
not available on the adapter or if there are no user-definable options
within that subsystem, the option can not be selected. The hardware
specific appendix for the adapter being configured lists the available
options.

DAQDRIVE User's Manual A-3

The general configuration window is used to define the interface between
the adapter and the host system. All adapter types require the general
configuration options:

A.3.3.1 Base Address
The base I/O address of the adapter must be specified using the base
address text box. If the adapter is PCMCIA, PCI, or Plug and Play
compatible, the user may specify a base address of 0. Setting the base
address to 0 instructs DAQDRIVE to determine the adapter's base
address, interrupt, and DMA settings automatically each time the device
is opened.

A.3.3.2 IRQ Level
The adapter's interrupt level (IRQ) must be selected from the
corresponding drop-down list box. If the adapter does not support
interrupts or if the base I/O address is set to 0, the interrupt list box is not
displayed.

A.3.3.3 DMA Channel 1
The adapter's primary DMA channel must be selected from the
corresponding drop-down list box. If the adapter does not support DMA
or if the base I/O address is set to 0, the primary DMA list box is not
displayed.

A.3.3.4 DMA Channel 2
The adapter's secondary DMA channel must be selected from the
corresponding drop-down list box. If the adapter does not support two
DMA channels, or if the base I/O address is set to 0, the secondary DMA
list box is not displayed.

A.3.4 A/D Converter Configuration

The A/D converter window is used to define the configuration of the
adapter's analog input channels. When these parameters define a specific
jumper setting on the adapter, it is the user's responsibility to assure the
adapter has been configured properly.

The Configuration Help window provides information regarding
hardware modification requirements (see section A.3.10). The number
and type of user-definable options available in this window is dependent
on the hardware installed and is discussed in the hardware specific
appendix for the adapter being configured.

A-4

A.3.4.1 A/D Converters
Select the analog-to-digital (ADC) device on the A/D adapter to be
configured from this list box. Most A/D adapters have only one ADC
device (0).

A.3.4.2 Channels
Dialog box shows the number of A/D input channels available on the
adapter in current configuration. A multiplexer (mux) feeds multiple
A/D inputs back into the actual ADC device(s). The number of channels
may be affected by the Input Mode.

A.3.4.3 Input Mode
Select the A/D input mode from the list box.

v Single Ended: A/D converter measures voltage from one input to
ground. All A/D channels normally share common ground.

v Differential: A/D converter measures voltage across two inputs
that are isolated from ground.

A.3.4.4 Signal Type
Select the signal type from the list box.

v Unipolar: ADC device reads only positive voltages.
v Bipolar: ADC device reads both positive and negative voltages.

A.3.4.5 Gain
This list box provides optional signal amplifier settings. Note that this
option is only available on devices with hardware selectable gain settings.
Devices with software programmable gains are configured at run-time.

A.3.5 A/D Converter Expansion Configuration

The A/D converter expansion window is used to define the configuration
of any expansion adapters connected to the analog input channels. To
assign an expansion board to an A/D channel click in the Expansion
Board Names column and a choose from the drop down list box.
The first A/D expansion board must always be connected to A/D channel
0, and additional expansion boards then connect to the next lowest
channel.

Expansion adapters are defined in a data base using the EXPBOARD
utility. The expansion board data base may be viewed from the DataBase
menu. However, to add or edit the expansion board data base this utility
must be run independently (see section A.4).

DAQDRIVE User's Manual A-5

The number and type of user-definable options available in this window is
dependent on the hardware installed. The configuration of the expansion
board defined in the EXPBOARD utility affects the options available here.

The parameters in this window refer only to the expansion board adapter
and do not effect the A/D converter configuration of the main board. In
most cases however, these two sets of parameters must be examined
together. For example, a gain of 2 in the A/D converter configuration
combined with a gain of 10 on the expansion board results in an overall
gain of 20.

When these parameters define a specific jumper setting on the expansion
board adapter, it is the user's responsibility to assure the adapter has been
configured properly.

A.3.5.1 Channels
Dialog box shows the number of A/D input channels available on the
expansion board in its current configuration. The values in this box are
defined in the EXPBOARD utility. The number of channels may be
effected by the Input Mode.

A.3.5.2 Input Mode
Select the A/D input mode from the list box.

v Single Ended: A/D converter measures voltage from one input to
ground. All A/D channels normally share common ground.

v Differential: A/D converter measures voltage across two inputs
that are isolated from ground.

A.3.5.3 Signal Type
Select the signal type from the list box.

v Unipolar: ADC device reads only positive voltages.
v Bipolar: ADC device reads both positive and negative voltages.

A.3.5.4 Gain
This list box provides optional signal amplifier settings. Note that this
option is only available on devices with hardware selectable gain settings.
Devices with software programmable gains are configurable at run-time.

A-6

A.3.6 A/D Signal Conditioners

A signal conditioner may be connected to any A/D main channel, and to
any A/D expansion channel marked “Signal Conditioner Connectable” in
the EXPBOARD utility (see A.4.2.11). Expansion boards are normally
used in conjunction with signal conditioners, but are not required. To
assign a signal conditioner to an A/D channel click in the Signal
Conditioner Name column and a choose from the drop down list box.

Signal conditioners are defined in a data base using the SIGCON utility.
The signal conditioner data base may be viewed from the DataBase menu.
However, to add or edit the signal conditioner data base this utility must
be run independently (see section A.5).

Mux CHCH
0-00-00
0-00-01
0-01
0-02

0
1
2
3

Main Channel
ADC Device

Expansion Channel

Logical Channel

Figure 1. A/D Channel Numbering

To help understand the A/D channel numbering system the following
terms are defined:

v Logical Channel: The CH column designates the logical number
that software should use to access the analog input channel. When
using expansion boards you may have up to 256 logical channels.

v ADC Device: The ADC device number. Most A/D adapters have
only one ADC device (0).

v Main Channel: Analog input channel on the A/D adapter board.
A multiplexer (mux) on the A/D adapter feeds multiple analog
inputs back into the actual ADC device(s).

v Expansion Channel: Analog input channel provided by an
expansion board connection to a single main analog channel.
Expansion boards use digital I/O to address multiple expansion
channels from a single main channel through a multiplexer.

DAQDRIVE User's Manual A-7

A.3.7 D/A Converter Configuration

The D/A converter window is used to define the configuration of the
adapter's analog output channels.

When these parameters define a specific jumper setting on the adapter, it
is the user's responsibility to assure the adapter has been configured
properly. The Configuration Help window provides information
regarding hardware modification requirements (see section A.3.10).

The number and type of user-definable options available in this window is
dependent on the hardware installed and is discussed in the hardware
specific appendix for the adapter being configured.

A.3.7.1 D/A Channels
Select the D/A channel to configure from the list. Each D/A channel
typically has its own digital-to-analog converter (DAC).

A.3.7.2 Signal Type
Select the signal type from the list box.

v Unipolar: DAC device outputs only positive voltages.
v Bipolar: DAC device outputs both positive and negative voltages.

A.3.7.3 Ref. Source
Analog output from DAC is proportional to a reference voltage. Select the
voltage source from the list box.

v Internal: Reference voltage generated by adapter board.
v External: Reference voltage supplied by an external source.

A.3.7.4 Ref. Voltage
The reference voltage is used as scaling multiplier for DAC output.

v For example on a 12 bit unipolar operation the analog output can
be calculated from the equation:

 A_Out = V_Ref * (Dig_Count / 4096) * Gain

A.3.7.5 Gain
The DAC output on some D/A adapters is connected to an output
amplifier before being output to the connector. This list box provides
optional output amplifier settings.

A-8

A.3.8 Timer Configuration

The timer configuration window is used to define the adapter's onboard
counter / timer circuits. Examples of settings found in this section include
counter size and input clock frequency.

When these parameters define a specific jumper setting on the adapter, it
is the user's responsibility to assure the adapter has been configured
properly. The Configuration Help window provides information
regarding hardware modification requirements (see section A.3.10).

The number and type of user-definable options available in this window is
dependent on the hardware installed and is discussed in the hardware
specific appendix for the adapter being configured.

A.3.9 Digital I/O Configuration

The digital I/O window is used to define the configuration of the
adapter's digital input / output channels.

When these parameters define a specific jumper setting on the adapter, it
is the user's responsibility to assure the adapter has been configured
properly. The Configuration Help window provides information
regarding hardware modification requirements (see section A.3.10).

The number and type of user-definable options available in this window is
dependent on the hardware installed and is discussed in the hardware
specific appendix for the adapter being configured.

A.3.9.1 Digital Channel Configuration
Each digital I/O bit on an adapter can be individually accessed though the
connector for control/monitoring of external digital devices. The digital
I/O bits on each adapter must be configured into logical channels. Digital
I/O channels can be set only 1 bit wide to access single I/O lines at the
connector, or logical channels that access multiple I/O bits simultaneously
are configurable.

Assign a logical channel number to the target digital I/O bit by clicking
on the current logical channel number. A drop down channel selection
box will appear with the possible channel configurations for this I/O bit
(see Figure 2). The rest of the digital I/O bits will be automatically
updated with correct channel numbers reflecting any changes. Repeat this
step for each digital I/O bit.

DAQDRIVE User's Manual A-9

A.3.9.2 Channel I/O Configuration
After all of the logical channels have been defined, they may be
configured for input, output, or input/output (I/O) by clicking on the
direction control button for each logical channel. All bits defined as a
member of that logical channel will toggle between the available settings.

Port 0

bit

CH

7 6 5 4 3 2 1 0

000 01233

3
4

InInInInInIn OutOut

Logical Channel

Direction Control

Channel Select

Figure 2. Digital I/O Configuration Display

A.3.10 Configuration Help

The hardware configuration of the adapter is the responsibility of the user.
Some of these hardware configuration settings may be handled through
software, while others may require switches or jumper blocks to be
modified. The configuration help window provides the user with the
jumper block or switch numbers to modify if required.

It is the responsibility of the user to determine the correct settings for the
current hardware configuration. This help window is only a tool to assist
the user in determining if and/or where hardware modifications are
required. The amount and type of information available in this window is
dependent on the hardware installed. No information is provided for
configuration options handled through software.

A-10

A.3.11 Saving The New Configuration

After the adapter configuration is complete, the user may overwrite the
current configuration file or a new configuration file can be generated. To
overwrite the existing configuration, simply select File, Save from the
menu. To generate a new configuration file

1. Select File, Save As

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of the new configuration data file in the file name
text box.

4. Choose OK.

When the user saves an adapter configuration, a corresponding report file
is generated using the same file name with the extension .RPT. This
report file provides an ASCII description of the hardware configuration
and may be viewed using any ASCII text editor.

A.3.12 Viewing the Report File

DAQCFG also provides a utility for viewing the configuration report file
(.RPT) generated when the data file was saved.

1. Select File, View Report

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of a report file (.RPT) in the file name text box or
select a report from the corresponding list box.

4. Choose OK.

5. Review the adapter's configuration using the Page-Up, Page-Down,
and arrow keys as well as the vertical and horizontal scroll bars.

6. When done, close the report viewer utility by selecting Close.

DAQDRIVE User's Manual A-11

A.4 A/D Expansion Board Database Utility

A.4.1 Starting the Expansion Board Utility

To execute the Expansion Board database configuration utility, simply
double click on the expansion utility icon located in the DAQDRIVE
program group.

A.4.2 Modifying the Data Base

Expansion adapters are defined in a data base using the EXPBOARD
utility. Several adapters are predefined and may not be modified by the
user. New adapters may be added or edited by the user as needed. Any
modification to an expansion board configuration is automatically
updated to the data base file.

The parameters for each expansion board in the data base refer only to the
expansion board adapter and do not effect the A/D converter
configuration of the main board. In most cases however, these two sets of
parameters must be examined together. For example, a gain of 2 in the
A/D converter configuration combined with a gain of 10 on the expansion
board results in an overall gain of 20.

When these parameters define a specific jumper setting on the expansion
board adapter, it is the user's responsibility to assure the adapter has been
configured properly. Refer to the expansion board documentation for
details and parameter values.

A.4.2.1 Long Device Name
Each expansion adapter must have a unique Long Device Name of 1 - 30
characters. The long device name used only for descriptive purposes.

A.4.2.2 Device Name
Each expansion adapter must have a unique Device Name of 14
characters or less.

A.4.2.3 Input Mode
Select the A/D input mode from the list box.

v Single Ended: A/D converter measures voltage from one input to
ground. All A/D channels normally share common ground.

v Differential: A/D converter measures voltage across two inputs
that are isolated from ground.

v DI/SE Selectable

A-12

A.4.2.4 Signal Type
Select the signal type from the list box.

v Unipolar: Expansion device reads only positive voltage.
v Bipolar: Device reads both positive and negative voltages.
v Selectable: Either of the signal types is available.

A.4.2.5 Num Gains
The Num Gains box refers to the number of gains available to the
programmer at run-time. Therefore, if the expansion board has 4 software
selectable gains this field should be set to 4. But, if the expansion board
has 4 hardware (jumper or switch) selectable gains, the Num Gains field
should be set to 1. In both cases fill in Gains list with all available gains.

A.4.2.6 Differential
Specify the number of differential A/D Expansion channels available on
the expansion board. A typical expansion board will connect to one A/D
main channel on the A/D adapter and provide up to 8 differential
expansion inputs.

A.4.2.7 Single Ended
Specify the number of Single Ended A/D Expansion channels available on
the expansion board. A typical expansion board will connect to one A/D
main channel on the A/D adapter and provide up to 16 single ended
expansion inputs.

A.4.2.8 Gains List
List all analog input amplier gains available on expansion board. When
the DAQDRIVE Configuration utility is run, the A/D expansion board
configuration section will include a Gains list box to select the expansion
board gain setting if the expansion board has hardware selectable gains.
Otherwise, the programmer may select any of the available expansion
board gains through software at run-time.

A.4.2.9 Maximum One Channel Frequency
Maximum sampling rate for a single A/D input.

A.4.2.10 Maximum Multi-Channel Frequency
Maximum scan rate for multiple A/D inputs. Normally slower than the
one channel maximum frequency since the multiplexer must switch
between A/D inputs.

DAQDRIVE User's Manual A-13

A.4.2.11 Channel Signal Type
Select the channel signal type from the list box. Selection determines
whether the DAQDRIVE Configuration utility will allow the use of signal
conditioners.

v Direct Analog Signal Connection: Expansion device supports only
direct analog signal inputs.

v Signal Conditioner Connectable: Expansion device supports the
use of signal conditioners.

A-14

A.5 Signal Conditioner Database Utility

A.5.1 Starting the Signal Conditioner Utility

To execute the Signal Conditioner database configuration utility, simply
double click on the SIGCON utility icon located in the DAQDRIVE
program group.

A.5.2 Modifying the Data Base

Signal Conditioners are defined in a data base using the SIGCON utility.
Several entries are predefined and may not be modified by the user. New
entries may be added or edited by the user as needed. Any modification
to a signal conditioner configuration is automatically updated to the data
base file.

The parameters for each signal conditioner in the data base refer only to
the signal conditioner and do not effect the A/D converter configuration
or the expansion board configuration. In most cases however, these sets of
parameters must be examined together to determine the overall
configuration. Refer to the signal conditioner documentation for details
and parameter values.

A.5.2.1 Long Device Name
Each device must have a unique Long Device Name of 1 - 30 characters.
The long device name used only for descriptive purposes.

A.5.2.2 Device Name
Each device must have a unique Device Name of 14 characters or less.

A.5.2.3 Device Type
Select the device type from the list box.

v Linear
v Nonlinear

A.5.2.4 Minimum Input
Minimum value the signal conditioner is capable of reading. Type of
signal is specified by Input Units.

A.5.2.5 Maximum Input
Maximum value the signal conditioner is capable of reading. Type of
signal is specified by Input Units.

DAQDRIVE User's Manual A-15

A.5.2.6 Input Units
Select the measurement units for the signal type from the list box. Below
is a sample of the choices.

v V (volts)
v A (amps)
v Degree C (temperature)
v Kg (kilogram)
v Hz (frequency)
v m/sec2 (acceleration)

A.5.2.7 Minimum Output
Minimum value the signal conditioner returns to the A/D input . Type of
signal is specified by Output Units.

A.5.2.8 Maximum Output
Maximum value the signal conditioner returns to the A/D input . Type of
signal is specified by Output Units.

A.5.2.9 Output Units
Specifies the measurement units for the signal type returned to the A/D
converter. Currently signal is always of type volts.

A.5.2.10 Bandwidth
Maximum frequency at which the signal conditioner can process data.

A.5.2.11 Maximum Scan Rate
Maximum frequency at which multiple devices may be scanned. This
rate is normally slower than the bandwidth rating due to switching and
settling times.

A-16

A.5.2.12 Number of Coefficients
The functional operation of a signal conditioner is defined by a
polynomial equation (see Figure 3). Refer to the signal conditioner
documentation for the polynomial coefficients defining the polynomial
equation. The number of coefficients specified for the equation is
manufacturer dependent. Specify the Number of Coefficients to be used
in the polynomial equation in this text box.

Signal
ConditionerSensor

Digital
CountInput

A/DVx0CTemp ()

0 1 2

2

3

3
n

n
Vy = A + A Vx + A Vx + A Vx + ...A Vx

where A = Polynomial Coefficientsn

Temp ()0C

Figure 3. The Polynomial Equation

A.5.2.13 Polynomial Coefficients
Up to 12 polynomial coefficients in the polynomial equation for the signal
conditioner may be specified. Fill in the Number of Coefficients text box
to match the number of coefficient values in the Polynomial Coefficients
list.

DAQDRIVE User's Manual A-17

(This page intentionally left blank.)

A-18

Appendix B: Request Structure Tutorial

B.1 Introduction

The key to unlocking the power and versatility of DAQDRIVE is in
understanding the user request structures. These data structures are
responsible for configuring DAQDRIVE for the desired operation. In
order to help the user understand these data structures, DAQDRIVE
includes a tutorial program for Microsoft Windows, DAQTUTOR, which
allows the user to define the desired operation as a series of text and
option boxes and then generates the C language programming required to
implement the desired operation.

B.2 Software Installation

The DAQDRIVE Request Structure Tutorial (DAQTUTOR) is installed
into the DAQDRIVE\TUTOR directory by the DAQDRIVE installation
program when the "Standard Installation" or the "Install Configuration
Utility and Tutorial" option is selected. Consult the Software Installation
section of the DAQDRIVE User's Manual for additional information.

DAQDRIVE User's Manual B-1

B.3 Using The Request Structure Tutorial

B.3.1 Starting The Tutorial

To execute the DAQDRIVE request structure tutorial, simply double click
on the DAQTUTOR icon located in the DAQDRIVE program group.

B.3.2 Creating An A/D Request Structure

From the menu, select Structures then select ADC. An ADC_request
window is displayed showing the default channel array, gain array, and
data buffer structure settings. A second window, accessed with the
Miscellaneous button, provides access to the additional configuration
information including the trigger configuration, sampling rate, and
number of scans. Additional information on A/D request structures is
available in chapter 5 of the DAQDRIVE User's Manual.

B.3.2.1 Changing the channel and gain arrays
The analog input request operates on the channels specified in the channel
array using the corresponding gain setting from the gain array. A valid
analog input request structure requires at least one element in each of
these arrays.

NOTE: DAQTUTOR accepts whatever values the user places in
the channel and gain arrays. It does not test the
validity of the parameters nor can it determine the
feasibility of the entry for any particular hardware
adapter.

To add channels to the channel array:

1. Enter a channel number in the Channel text box.

2. Enter a gain setting for this channel in the Gain text box.

3. Click Add.

To remove channels from the channel array:

1. Highlight the entry in the channel array to be removed.

2. Click Remove.

B-2

B.3.2.2 Configuring the A/D data buffer structures
On the main window, DAQTUTOR displays an ADC_buffer area to
configure the data buffer structures required for the analog input request.
There must be at least one structure defined, therefore, the software will
not allow the user to delete the default structure ADC_buf0.

To add additional data buffer structures:

1. Enter a new structure name in the Buffer Name text box.

2. Click Add.

To remove data buffer structures from the list:

1. Highlight the entry to be removed in the Buffer Name window.

2. Click Remove.

For each ADC_buffer structure in the Buffer Name window, the user must
define the following fields:

1. Status - indicates the current state of the data buffer and must be
initialized to BUFFER_EMPTY for analog input requests.

2. Data Size - defines the size of each data element and must be set to
the data type returned by the A/D converter.

3. Data Array - specifies the starting memory address where the A/D
data will be stored.

4. Length - defines the length of the data array in units of "number of
points". The data array must be long enough to store at least one
point from each channel in the channel array.

5. Cycles - unused for analog input requests.

NOTE: Additional details on configuring data buffer structures
are provided in chapter 9 of the DAQDRIVE User's
Manual.

DAQDRIVE User's Manual B-3

B.3.2.3 Specifying the trigger configuration
The trigger configuration window allows the user to configure the trigger
sub-system of the analog input adapter. The trigger configuration
window is accessed by clicking the Miscellaneous button on the main
ADC request display. The user must define the following trigger
parameters:

1. Source - defines the trigger source for the request. DAQTUTOR
can not confirm the availability of the requested trigger source on
the target hardware adapter.

2. Mode - defines the trigger mode as one-shot (one sample/trigger)
or continuous (one sample to initiate the request).

3. Slope - defines the slope of the signal required to generate the TTL
or analog trigger. Slope is ignored for all other trigger sources.

4. Voltage - specifies the voltage level required for the analog trigger
source. Voltage is ignored for all other trigger sources.

5. Channel - specifies the source of the trigger signal for the analog
and digital trigger sources. Channel is ignored for all other trigger
sources.

6. Value - specifies the value required for a digital trigger to occur.
Value is ignored for all other trigger sources.

NOTE: Additional details on trigger sub-system settings are
provided in chapter 10 of the DAQDRIVE User's
Manual.

B-4

B.3.2.4 Miscellaneous configuration parameters
The remaining request structure parameters are accessed by clicking the
Miscellaneous button on the main ADC request display. The user must
define the following parameters:

1. IO mode - defines the mechanism that will be used to transfer the
data from the adapter to system memory.

2. Calibration - specifies the type of calibration to be performed by the
hardware during this request. DAQTUTOR can not confirm the
availability of the requested calibration mode on the target
hardware adapter.

3. Clock Source - specifies the source of the timing signal to be used
for requests acquiring multiple samples.

4. Clock Rate - defines the frequency of the clock input when an
external clock source is selected. Any value specified in this field is
ignored for internal clock sources.

5. Sample Rate - specifies the number of samples / second (Hz) to be
input from the hardware device.

6. Number of Scans - defines the number of times the channel(s)
specified in the channel array will be processed. Each channel will
be input 'Number of Scans' times.

7. Scan Event Level - defines the frequency of the scan event. A scan
event is generated each time 'scan event level' scans of the channel
array are completed.

8. Timeout Interval - defines the amount of time DAQDRIVE will
wait for an event to occur (e.g. waiting for a trigger) before
abandoning the requested operation.

DAQDRIVE User's Manual B-5

B.3.3 Generating A D/A Request Structure

From the menu, select Structures then select DAC. A DAC_request
window is displayed showing the default channel array and data buffer
structure settings. A second window, accessed with the Miscellaneous
button, provides access to the additional configuration information
including the trigger configuration, sampling rate, and number of scans.
Additional information on D/A request structures is available in chapter 6
of the DAQDRIVE User's Manual.

B.3.3.1 Changing the channel array
The analog output request operates on the channels specified in the
channel array. A valid analog output request structure requires at least
one element in the channel array.

NOTE: DAQTUTOR accepts whatever values the user places in
the channel array. It does not test the validity of the
parameters nor can it determine the feasibility of the
entry for any particular hardware adapter.

To add channels to the channel array:

1. Enter a channel number in the Channel text box.

2. Click Add.

To remove channels from the channel array:

1. Highlight the entry in the channel array to be removed.

2. Click Remove.

B-6

B.3.3.2 Configuring the D/A data buffer structures
On the main window, DAQTUTOR displays an DAC_buffer area to
configure the data buffer structures required for the analog output
request. There must be at least one structure defined, therefore, the
software will not allow the user to delete the default structure DAC_buf0.

To add additional data buffer structures:

1. Enter a new structure name in the Buffer Name text box.

2. Click Add.

To remove data buffer structures from the list:

1. Highlight the entry to be removed in the Buffer Name window.

2. Click Remove.

For each DAC_buffer structure in the Buffer Name window, the user must
define the following fields:

1. Status - indicates the current state of the data buffer and must be
initialized to BUFFER_FULL for analog output requests.

2. Data Size - defines the size of each data element and must be set to
the data type required by the D/A converter.

3. Data Array - specifies the starting memory address where the D/A
data is stored.

4. Length - defines the length of the data array in units of "number of
points". The data array must be long enough to contain at least one
point for each channel in the channel array.

5. Cycles - specifies the number of times the data in this structure is
processed before advancing to the next data structure. If set to 0,
the current structure is processed continuously.

NOTE: Additional details on configuring data buffer structures
are provided in chapter 9 of the DAQDRIVE User's
Manual.

DAQDRIVE User's Manual B-7

B.3.3.3 Specifying the trigger configuration
The trigger configuration window allows the user to configure the trigger
sub-system of the analog output adapter. The trigger configuration
window is accessed by clicking the Miscellaneous button on the main
DAC request display. The user must define the following trigger
parameters:

1. Source - defines the trigger source for the request. DAQTUTOR
can not confirm the availability of the requested trigger source on
the target hardware adapter.

2. Mode - defines the trigger mode as one-shot (one sample/trigger)
or continuous (one sample to initiate the request).

3. Slope - defines the slope of the signal required to generate the TTL
or analog trigger. Slope is ignored for all other trigger sources.

4. Voltage - specifies the voltage level required for the analog trigger
source. Voltage is ignored for all other trigger sources.

5. Channel - specifies the source of the trigger signal for the analog
and digital trigger sources. Channel is ignored for all other trigger
sources.

6. Value - specifies the value required for a digital trigger to occur.
Value is ignored for all other trigger sources.

NOTE: Additional details on trigger sub-system settings are
provided in chapter 10 of the DAQDRIVE User's
Manual.

B-8

B.3.3.4 Miscellaneous configuration parameters
The remaining request structure parameters are accessed by clicking the
Miscellaneous button on the main DAC request display. The user must
define the following parameters:

1. IO mode - defines the mechanism that will be used to transfer the
data from system memory to the adapter.

2. Calibration - specifies the type of calibration to be performed by the
hardware during this request. DAQTUTOR can not confirm the
availability of the requested calibration mode on the target
hardware adapter.

3. Clock Source - specifies the source of the timing signal to be used
for requests containing multiple samples.

4. Clock Rate - defines the frequency of the clock input when an
external clock source is selected. Any value specified in this field is
ignored for internal clock sources.

5. Sample Rate - specifies the number of samples / second (Hz) to be
output to the hardware device.

6. Number of Scans - defines the number of times the channel(s)
specified in the channel array will be processed. Each channel will
be output 'Number of Scans' times.

7. Scan Event Level - defines the frequency of the scan event. A scan
event is generated each time 'scan event level' scans of the channel
array are completed.

8. Timeout Interval - defines the amount of time DAQDRIVE will
wait for an event to occur (e.g. waiting for a trigger) before
abandoning the requested operation.

DAQDRIVE User's Manual B-9

B.3.4 Generating A Digital Input Request Structure

From the menu, select Structures then select Digital Input. A
DIN_request window is displayed showing the default channel array and
data buffer structure settings. A second window, accessed with the
Miscellaneous button, provides access to the additional configuration
information including the trigger configuration, sampling rate, and
number of scans. Additional information on digital input request
structures is available in chapter 7 of the DAQDRIVE User's Manual.

B.3.4.1 Changing the channel array
The digital input request operates on the channels specified in the channel
array. A valid digital input request structure requires at least one element
in the channel array.

NOTE: DAQTUTOR accepts whatever values the user places in
the channel array. It does not test the validity of the
parameters nor can it determine the feasibility of the
entry for any particular hardware adapter.

To add channels to the channel array:

1. Enter a channel number in the Channel text box.

2. Click Add.

To remove channels from the channel array:

1. Highlight the entry in the channel array to be removed.

2. Click Remove.

B-10

B.3.4.2 Configuring the digital input data buffer structures
On the main window, DAQTUTOR displays a DIN_buffer area to
configure the data buffer structure required for the digital input request.
Presently, DAQTUTOR allows only one buffer structure, DIN_buf0, for
digital input requests.

For each DIN_buffer structure in the Buffer Name window, the user must
define the following fields:

1. Status - indicates the current state of the data buffer and must be
initialized to BUFFER_EMPTY for digital input requests.

2. Data Size - defines the size of each data element and must be set to
the data type returned by the digital input channels.

3. Data Array - specifies the starting memory address where the
digital input data will be stored.

4. Length - defines the length of the data array in units of "number of
points". The data array must be long enough to store at least one
point from each channel in the channel array.

5. Cycles - unused for digital input requests.

NOTE: Additional details on configuring data buffer structures
are provided in chapter 9 of the DAQDRIVE User's
Manual.

DAQDRIVE User's Manual B-11

B.3.4.3 Specifying the trigger configuration
The trigger configuration window allows the user to configure the trigger
sub-system of the digital input adapter. The trigger configuration
window is accessed by clicking the Miscellaneous button on the main
digital input request display. The user must define the following trigger
parameters:

1. Source - defines the trigger source for the request. DAQTUTOR
can not confirm the availability of the requested trigger source on
the target hardware adapter.

2. Mode - defines the trigger mode as one-shot (one sample/trigger)
or continuous (one sample to initiate the request).

3. Slope - defines the slope of the signal required to generate the TTL
or analog trigger. Slope is ignored for all other trigger sources.

4. Voltage - specifies the voltage level required for the analog trigger
source. Voltage is ignored for all other trigger sources.

5. Channel - specifies the source of the trigger signal for the analog
and digital trigger sources. Channel is ignored for all other trigger
sources.

6. Value - specifies the value required for a digital trigger to occur.
Value is ignored for all other trigger sources.

NOTE: Additional details on trigger sub-system settings are
provided in chapter 10 of the DAQDRIVE User's
Manual.

B-12

B.3.4.4 Miscellaneous configuration parameters
The remaining request structure parameters are accessed by clicking the
Miscellaneous button on the main digital input request display. The user
must define the following parameters:

1. IO mode - defines the mechanism that will be used to transfer the
data from the adapter to system memory.

2. Calibration - not available with digital input request.

3. Clock Source - specifies the source of the timing signal to be used
for requests acquiring multiple samples.

4. Clock Rate - defines the frequency of the clock input when an
external clock source is selected. Any value specified in this field is
ignored for internal clock sources.

5. Sample Rate - specifies the number of samples / second (Hz) to be
input from the hardware device.

6. Number of Scans - defines the number of times the channel(s)
specified in the channel array will be processed. Each channel will
be input 'Number of Scans' times.

7. Scan Event Level - defines the frequency of the scan event. A scan
event is generated each time 'scan event level' scans of the channel
array are completed.

8. Timeout Interval - defines the amount of time DAQDRIVE will
wait for an event to occur (e.g. waiting for a trigger) before
abandoning the requested operation.

DAQDRIVE User's Manual B-13

B.3.5 Generating A Digital Output Request Structure

From the menu, select Structures then select Digital Output. A
DOUT_request window is displayed showing the default channel array
and data buffer structure settings. A second window, accessed with the
Miscellaneous button, provides access to the additional configuration
information including the trigger configuration, sampling rate, and
number of scans. Additional information on digital output request
structures is available in chapter 8 of the DAQDRIVE User's Manual.

B.3.5.1 Changing the channel array
The digital output request operates on the channels specified in the
channel array. A valid digital output request structure requires at least
one element in the channel array.

NOTE: DAQTUTOR accepts whatever values the user places in
the channel array. It does not test the validity of the
parameters nor can it determine the feasibility of the
entry for any particular hardware adapter.

To add channels to the channel array:

1. Enter a channel number in the Channel text box.

2. Click Add.

To remove channels from the channel array:

1. Highlight the entry in the channel array to be removed.

2. Click Remove.

B-14

B.3.5.2 Configuring the digital output data buffer structures
On the main window, DAQTUTOR displays a DOUT_buffer area to
configure the data buffer structures required for the digital output
request. Presently, DAQTUTOR allows only one buffer structure,
DOUT_buf0, for digital output requests.

For each DOUT_buffer structure in the Buffer Name window, the user
must define the following fields:

1. Status - indicates the current state of the data buffer and must be
initialized to BUFFER_FULL for digital output requests.

2. Data Size - defines the size of each data element and must be set to
the data type required by the digital output channels.

3. Data Array - specifies the starting memory address where the data
to be output is stored.

4. Length - defines the length of the data array in units of "number of
points". The data array must be long enough to contain at least one
point for each channel in the channel array.

5. Cycles - specifies the number of times the data in this structure is
processed before advancing to the next data structure. If set to 0,
the current structure is processed continuously.

NOTE: Additional details on configuring data buffer structures
are provided in chapter 9 of the DAQDRIVE User's
Manual.

DAQDRIVE User's Manual B-15

B.3.5.3 Specifying the trigger configuration
The trigger configuration window allows the user to configure the trigger
sub-system of the digital output adapter. The trigger configuration
window is accessed by clicking the Miscellaneous button on the main
digital output request display. The user must define the following trigger
parameters:

1. Source - defines the trigger source for the request. DAQTUTOR
can not confirm the availability of the requested trigger source on
the target hardware adapter.

2. Mode - defines the trigger mode as one-shot (one sample/trigger)
or continuous (one sample to initiate the request).

3. Slope - defines the slope of the signal required to generate the TTL
or analog trigger. Slope is ignored for all other trigger sources.

4. Voltage - specifies the voltage level required for the analog trigger
source. Voltage is ignored for all other trigger sources.

5. Channel - specifies the source of the trigger signal for the analog
and digital trigger sources. Channel is ignored for all other trigger
sources.

6. Value - specifies the value required for a digital trigger to occur.
Value is ignored for all other trigger sources.

NOTE: Additional details on trigger sub-system settings are
provided in chapter 10 of the DAQDRIVE User's
Manual.

B-16

B.3.5.4 Miscellaneous configuration parameters
The remaining request structure parameters are accessed by clicking the
Miscellaneous button on the main digital output request display. The
user must define the following parameters:

1. IO mode - defines the mechanism that will be used to transfer the
data from system memory to the adapter.

2. Calibration - not available for digital output requests.

3. Clock Source - specifies the source of the timing signal to be used
for requests containing multiple samples.

4. Clock Rate - defines the frequency of the clock input when an
external clock source is selected. Any value specified in this field is
ignored for internal clock sources.

5. Sample Rate - specifies the number of samples / second (Hz) to be
output to the hardware device.

6. Number of Scans - defines the number of times the channel(s)
specified in the channel array will be processed. Each channel will
be output 'Number of Scans' times.

7. Scan Event Level - defines the frequency of the scan event. A scan
event is generated each time 'scan event level' scans of the channel
array are completed.

8. Timeout Interval - defines the amount of time DAQDRIVE will
wait for an event to occur (e.g. waiting for a trigger) before
abandoning the requested operation.

DAQDRIVE User's Manual B-17

B.3.6 Creating Source Code

The purpose of DAQTUTOR is to allow the user to create the C language
code required to initialize the DAQDRIVE request structures by simply
specifying the desired configuration. Two output options are available.
Option 1 copies information to and from the Windows clipboard while
option two creates an ASCII file compatible with any ASCII text editor.
Both of these options are discussed in the following sections.

B.3.6.1 Using the clipboard
DAQTUTOR allows the user to create the C source code to initialize the
currently active request structure by simply clicking 'Copy to Clipboard'
at the bottom of the main display window. The user may then view this
information with the Windows ClipBook Viewer application or by pasting
the information into any ASCII editor (e.g. Windows Notepad). The user
may also clear the clipboard at any time using the Clear Clipboard button
on the main display window.

B.3.6.2 Creating a source code file
DAQTUTOR allows the user to create a file containing the C source code
to initialize each of the DAQDRIVE request structures. To create the
source code file:

1. Select File, Save As

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of the request structure data file (.STR) in the file
name text box.

4. Choose OK.

The resulting file contains all of the source code necessary to allocate and
initialize the specified A/D, D/A, digital input, and digital output request
structures. This file may be included directly into any C source file or
sections may be cut-and-pasted using any ASCII text editor.

B-18

DAQTUTOR also contains a utility to allow the user to view the newly
created structure file before leaving the tutorial application. To view a
generated source file:

1. Select File, View File

2. Select the drive and directory in the corresponding list boxes.

3. Type the name of a structure source file (.STR) in the file name text
box or select a file from the corresponding list box.

4. Choose OK.

5. Review the file using the Page-Up, Page-Down, and arrow keys as
well as the vertical and horizontal scroll bars.

6. When done, close the viewer utility by selecting Close.

DAQDRIVE User's Manual B-19

(This page intentionally left blank.)

B-20

Appendix D: DAQ-16

D.1 Distribution Software

D.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQ-16s, the
application must be linked with the appropriate DAQDRIVE library and
one of the following DAQ-16 libraries:

For Microsoft Visual C/C++

v DAQ16MS.LIB - small model DAQ-16 library
v DAQ16MM.LIB - medium model DAQ-16 library
v DAQ16MC.LIB - compact model DAQ-16 library
v DAQ16ML.LIB - large model DAQ-16 library

For Borland C/C++

v DAQ16BS.LIB - small model DAQ-16 library
v DAQ16BM.LIB - medium model DAQ-16 library
v DAQ16BC.LIB - compact model DAQ-16 library
v DAQ16BL.LIB - large model DAQ-16 library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DAQ16.H installed
into the DAQDRIVE\C_LIBS directory. This file defines the "open"
procedure for the C library version of the DAQ-16 driver.

DAQDRIVE User's Manual D-1

D.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-16 application that uses the TSR drivers, the user
must first load the DAQDRIVE TSR as discussed in the DAQDRIVE User's
Manual. Once the DAQDRIVE TSR is installed, the user can install the
DAQ-16 TSR with the command line:

DAQ16TSR

This file, DAQ16TSR.EXE, is installed into the DAQDRIVE\TSR directory
by the DAQDRIVE installation program.

When the DAQ-16 TSR driver is executed, it will search for the
DAQDRIVE TSR in memory and install itself on the same software
interrupt. If the DAQDRIVE TSR is not loaded in memory, an error will
be reported and the DAQ-16 driver will not be installed.

D.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DAQ-16s is executed, it must be able to dynamically link to the
DAQDRIVE and DAQ-16 Dynamic Link Libraries (DLLs). Windows
searches for any required DLLs in the following locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DAQ16.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

D-2

D.2 Configuring The DAQ-16

Before DAQDRIVE can operate the DAQ-16, a configuration data file
must be generated by the DAQDRIVE configuration utility program
DAQCFGW.EXE for Microsoft Windows.

D.2.1 General Configuration

The DAQ-16's base address, interrupt level and DMA channels must be
defined in the general configuration window of the configuration utility.
These selections must reflect the configuration of switches SW1 and SW2
and jumpers J8, J9, J10, and J11 as defined in the DAQ-16 Hardware
Reference Manual.

D.2.2 A/D Converter Configuration

The DAQ-16's A/D converter must be configured for bipolar or unipolar
operation and a gain value must be specified. These selections must
reflect the configuration of jumpers J5 and J7 as defined in the DAQ-16
Hardware Reference Manual.

Furthermore, the data format jumper must be configured according to the
input mode. If the A/D is configured for bipolar operation, the data
format must be set to 2's complement using jumper J5. If the A/D is
configured for unipolar operation, the data format must be set to binary
using jumper J5. Jumper J6 determines input voltage range, which can be
set as 10V, 5V or 2.5V. Once the input range setting is made, one should
choose DAQ16_0.DAT (for 10V), DAQ16_1.DAT (for 5V), or
DAQ16_2.DAT (for 2.5V) configuration data file.

D.2.3 D/A Converter Configuration

The DAQ-16's D/A converter parameters are device type (bipolar or
unipolar), reference source (internal or external), and reference voltage.
These selections must reflect the configuration of jumpers J3 and J4 as
defined in the DAQ-16 Hardware Reference Manual.

D.2.4 Digital I/O Configuration

The DAQ-16 contains 8 bits of digital I/O. The first 4 bits are fixed output
and last 4 bits are fixed input. The logical channel assignments begin with
digital I/O bit 0 and continue through to digital I/O bit 7.

D.2.5 Timer Configuration

The DAQ-16 does not have any user-definable timer parameters.

DAQDRIVE User's Manual D-3

D.3 Opening The DAQ-16

D.3.1 Using the DAQ-16 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter. In order to open a DAQ-16, the application program must
include DAQ16.H. In addition, the constant PROCEDURE must be
replaced by DAQ16 (exactly and without quotes) and the device_type
variable must be defined as "DAQ-16".

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq16.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-16";
char *config_file = "c:\\daq16\\daq-16.dat";

/***** Open the DAQ-16. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ16, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

D-4

D.3.2 Using the DAQ-16 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The TSR version of DaqOpenDevice is intended for
DOS applications that interface to the memory resident (TSR) version of
the DAQDRIVE drivers.

Each hardware device supported by DAQDRIVE has been assigned a
unique TSR_number value to be used with the DaqOpenDevice
procedure. In order to open a DAQ-16, the TSR_number variable must be
set to the value F002 hexadecimal (61, 442 decimal) and the device_type
variable must be defined as "DAQ-16" for a DAQ-16 adapter.

DAQDRIVE User's Manual D-5

unsigned short DaqOpenDevice(unsinged short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf002;
char *device_type = "daq-16";
char *config_file = "c:\\daq16\\daq-16.dat";

/***** Open the daq-16. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

D.3.3 Using the DAQ-16 with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

In order to open a DAQ-16, the DLL_name variable must specify the
DAQ-16 dynamic link library (DAQ16.DLL) and the device_type variable
must be defined as "DAQ-16".

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-16";
char *config_file = "c:\\DAQ16\\DAQ-16.dat";
char *DLL_name = "c:\\windows\\system\\DAQ16.dll";

/***** Open the DAQ-16. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

D-6

D.4 Analog Input

The DAQ-16 supports analog input requests with the following
restrictions:

gain_array_ptr - because the DAQ-16 only supports one gain setting
per acquisition, all of the values specified by
gain_array_ptr must be the same. In addition, the
value specified for the gain must match the value
stored in the DAQ-16 configuration file.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER
sources are supported.

IO_mode - DMA_FOREGROUND and DMA_BACKGROUND
modes are only supported for single channel
operations (i.e. when array_length = 1).

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - must be in the range 2.33 mHz (2.33e-3) ≤
sample_rate ≤ 100 kHz (100e3) for single channel
operation or 153 Hz ≤ sample_rate ≤ [1/(10µsec *
array_length)] for multiple channel operations (i.e.
array_length > 1)

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE User's Manual D-7

D.5 Analog Output

The DAQ-16 supports analog output requests with the following
restrictions:

array_length - only single channel operations are supported.
Therefore, array_length must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU and
BACKGROUND_IRQ data transfer modes are
supported.

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - must be greater than 153Hz. The maximum value of
sample_rate is dependent upon the speed of the
computer used.

calibration - only the NO_CALIBRATION selection is supported.

D-8

D.6 Digital Input

The DAQ-16 supports digital input requests with the following
restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is
supported.

number_of_scans - only single point operations are supported.
Therefore, number_of_scans must equal 1.

D.7 Digital Output

The DAQ-16 supports digital output requests with the following
restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER is supported

IO_mode - only the FOREGROUND_CPU mode is supported.

number_of_scans - only single point operations are supported.
Therefore, number_of_scans must equal 1.

DAQDRIVE User's Manual D-9

(This page intentionally left blank.)

D-10

Appendix E: DAQ-801/802

E.1 Distribution Software

E.1.1 Creating DOS Applications Using The C Libraries

To generate an application that controls one or more DAQ-801/802s, the
application must be linked with the appropriate DAQDRIVE library and
one of the following DAQ-801/802 libraries:

For Microsoft Visual C/C++

v DAQ800MS.LIB - small model DAQ-800 library
v DAQ800MM.LIB - medium model DAQ-800 library
v DAQ800MC.LIB - compact model DAQ-800 library
v DAQ800ML.LIB - large model DAQ-800 library

For Borland C/C++

v DAQ800BS.LIB - small model DAQ-800 library
v DAQ800BM.LIB - medium model DAQ-800 library
v DAQ800BC.LIB - compact model DAQ-800 library
v DAQ800BL.LIB - large model DAQ-800 library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DAQ800.H installed
into the DAQDRIVE\C_LIBS directory. This file defines the "open"
procedure for the C library version of the DAQ-800 driver.

DAQDRIVE User's Manual E-1

E.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-801/802 application that uses the TSR drivers, the
user must first load the DAQDRIVE TSR as discussed in the DAQDRIVE
User's Manual. Once the DAQDRIVE TSR is installed, the user can install
the DAQ-801/802 TSR with the command line:

DAQ-800

This file, DAQ-800.EXE, is installed into the DAQDRIVE\TSR directory
by the DAQDRIVE installation program.

When the DAQ-801/802 TSR driver is executed, it will search for the
DAQDRIVE TSR in memory and install itself on the same software
interrupt. If the DAQDRIVE TSR is not loaded in memory, an error will
be reported and the DAQ-801/802 driver will not be installed.

E.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DAQ-801/802s is executed, it must be able to dynamically link to the
DAQDRIVE and DAQ-801/802 Dynamic Link Libraries (DLLs).
Windows searches for any required DLLs in the following locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DAQ800.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

E-2

E.2 Configuring The DAQ-801/802

Before DAQDRIVE can operate the DAQ-801/802, a configuration data
file must be generated by the DAQDRIVE configuration utility.

E.2.1 General Configuration

The DAQ-801/802's base address and interrupt level must be defined in
the general configuration window of the configuration utility. The base
address range is from 0 to 7FF0H with 10H interval. The base address
value should reflect the DIP switch setting of SW1 and SW2 (refer to the
DAQ-801/802 Hardware Manual).

E.2.2 A/D Converter Configuration

The only A/D converter parameter needed to be set in DAQ-801/802 is
device type (Bipolar or Unipolar).

E.2.3 D/A Converter Configuration

The DAQ-801/802's D/A converter parameters are device type (bipolar or
unipolar), reference source (internal or external), reference voltage, and
gain (gain of 1 or 2). These parameters should reflect the jumper setting of
J2 and J4 of the board (refer to the DAQ-801/802 Hardware Manual).

E.2.4 Digital I/O Configuration

The DAQ-801/802 has 32 bits of digital I/O. The first 24 bits are Port A,
Port B, and Port C which are 8255A mode 0 equivalent. In the I/O port
portion of the configuration window, the first 4 bits are fixed output and
last 4 bits are fixed input. The 32 bits of digital I/O may be grouped into
any combination of logical channels as long as the channels are in the
same group type. The group type are Port A, Port B, Port C bit 0 to 3, Port
C bit 4 to 7, 4-bit fixed input and 4-bit fixed output. The logical channel
assignments begin with digital I/O bit 0 and continue through digital I/O
bit 31.

E.2.5 Timer Configuration

The DAQ-801/802 does not have any user-definable timer parameters.

DAQDRIVE User's Manual E-3

E.3 Opening The DAQ-801/802

E.3.1 Using the DAQ-801/802 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter. In order to open a DAQ-801/802, the application program must
include DAQ800.H. In addition, the constant PROCEDURE must be
replaced by DAQ800 (exactly and without quotes) and the device_type
variable must be defined as "DAQ-801" for a DAQ-801 adapter or
"DAQ-802" for a DAQ-802 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq800.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-801";
char *config_file = "c:\\daq800\\daq-801.dat";

/***** Open the daq-801. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ800, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

E-4

E.3.2 Using the DAQ-801/802 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The TSR version of DaqOpenDevice is intended for
DOS applications that interface to the memory resident (TSR) version of
the DAQDRIVE drivers.

unsigned short DaqOpenDevice(unsigned short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a
unique TSR_number value to be used with the DaqOpenDevice
procedure. In order to open a DAQ-801/802, the TSR_number variable
must be set to the value F003 hexadecimal (61, 443 decimal) and the
device_type variable must be defined as "DAQ-801" for a DAQ-801
adapter or "DAQ-802" for a DAQ-802 adapter.

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf003;
char *device_type = "DAQ-801";
char *config_file = "daq-801.dat";

/***** Open the DAQ-801. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual E-5

E.3.3 Using the DAQ-801/802 with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

In order to open a DAQ-801/802, the DLL_name variable must specify the
DAQ-801/802 dynamic link library (DAQ800.DLL) and the device_type
variable must be defined as "DAQ-801" for a DAQ-801 adapter or
"DAQ-802" for a DAQ-802 adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-802";
char *config_file = "c:\\DAQ800\\DAQ-802.dat";
char *DLL_name = "c:\\windows\\system\\DAQ800.dll";

/***** Open the DAQ802. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

E-6

E.4 Analog Input

The DAQ-801/802 supports analog input requests with the following
restrictions:

channel_array_ptr - In the channel array, the channel numbers must be in
sequential order from start channel to stop channel.
If the start channel number is greater than stop
channel number, it will wrap from channel 7 to
channel 0 and continue to the end channel. For
example, both {2,3,4,5,6} and {6,7,0,1,2} are valid
channel lists.

trigger_source - INTERNAL_TRIGGER, TTL_TRIGGER, and
ANALOG_TRIGGER sources are supported.

trigger_channel - trigger_channel MUST equal the first channel in the
channel list.

trigger_voltage - The trigger voltage must be within the valid analog
input range of trigger_channel.

IO_mode - Only the FOREGROUND_CPU and
BACKGROUND_IRQ data transfer modes are
supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - sample_rate must be in the range 5.82e-4 Hz to 40
KHz (4e4).

DAQDRIVE User's Manual E-7

E.5 Analog Output

The DAQ-801/802 supports analog output requests with the following
restrictions:

array_length - only single channel operations are supported.
Therefore array_length must equal 1.

trigger_source - Only the INTERNAL_TRIGGER source is
supported.

IO_mode - Only the FOREGROUND_CPU and
BACKGROUND_IRQ data transfer modes are
supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - The minimum value of sample_rate is 38.15Hz. The
maximum value of sample_rate is depending on the
speed of the computer used.

calibration - Only the NO_CALIBRATION selection is supported.

E-8

E.6 Digital Input

The DAQ-801/802 supports digital input requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is
supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

E.7 Digital Output

The DAQ-801/802 supports digital output requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

DAQDRIVE User's Manual E-9

(This page intentionally left blank.)

E-10

Appendix F: DAQ-1201/1202

F.1 Distribution Software

F.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQ-1201/1202s,
the application must be linked with the appropriate DAQDRIVE library
and one of the following DAQ-1201/1202 libraries:

For Microsoft Visual C/C++

v DQ1200MS.LIB - small model DAQ-1200 library
v DQ1200MM.LIB - medium model DAQ-1200 library
v DQ1200MC.LIB - compact model DAQ-1200 library
v DQ1200ML.LIB - large model DAQ-1200 library

For Borland C/C++

v DQ1200BS.LIB - small model DAQ-1200 library
v DQ1200BM.LIB - medium model DAQ-1200 library
v DQ1200BC.LIB - compact model DAQ-1200 library
v DQ1200BL.LIB - large model DAQ-1200 library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DAQ1200.H installed
into the DAQDRIVE\C_LIBS directory. This file defines the "open"
procedure for the C library version of the DAQ-1200 driver.

DAQDRIVE User's Manual F-1

F.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ-1201/1202 application that uses the TSR drivers,
the user must first load the DAQDRIVE TSR as discussed in the
DAQDRIVE User's Manual. Once the DAQDRIVE TSR is installed, the
user can install the DAQ-1200 TSR with the command line:

DAQ-1200

This file, DAQ-1200.EXE, is installed into the DAQDRIVE\TSR directory
by teh DAQDRIVE installation program.

When the DAQ-1200 TSR driver is executed, it will search for the
DAQDRIVE TSR in memory and install itself on the same software
interrupt. If the DAQDRIVE TSR is not loaded in memory, an error will
be reported and the DAQ-1200 driver will not be installed.

F.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DAQ-1201/1202s is executed, it must be able to dynamically link to
DAQDRIVE and DAQ-1200 Dynamic Link Libraries (DLLs). Windows
searches for any required DLLs in the following locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DAQ1200.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

F-2

F.2 Configuring The DAQ-1201/1202

Before DAQDRIVE can operate the DAQ-1201/1202, a configuration data
file must be generated by the DAQDRIVE configuration utility program
DAQCFGW.EXE for Microsoft Windows.

F.2.1 General Configuration

The DAQ-1201/1202's base address, interrupt level and DMA channels
must be defined in the general configuration window of the configuration
utility. The base address range is from 0 to 7FF0H with 10H interval. The
base address value should reflect the DIP switch setting of SW1 and SW2
(refer to the DAQ-1201/1202 Hardware Manual).

F.2.2 A/D Converter Configuration

The A/D converter parameters in DAQ-1201/1202 are device type
(Bipolar or Unipolar), differential or single-ended.

F.2.3 D/A Converter Configuration

The DAQ-1201/1202's D/A converter parameters are device type (bipolar
or unipolar), reference source (internal or external), reference voltage, and
gain (gain of 1 or 2). These parameters should reflect the jumper settings
of J4 and J5 of the board (refer to the DAQ-1201/1202 Hardware Manual).

F.2.4 Digital I/O Configuration

The DAQ-1201/1202 has 32 bits of digital I/O. The first 24 bits are Port A,
Port B, and Port C which are 8255A mode 0 equivalent. In the I/O port
portion of the configuration window, the first 4 bits are fixed output and
last 4 bits are fixed input. The 32 bits of digital I/O may be grouped into
any combination of logical channels as long as the channels are in the
same group type. The group type are Port A, Port B, Port C bit 0 to 3, Port
C bit 4 to 7, 4-bit fixed input and 4-bit fixed output. The logical channel
assignments begin with digital I/O bit 0 and continue through digital I/O
bit 31.

F.2.5 Timer Configuration

The DAQ-1201/1202 does not have any user-definable timer parameters.

DAQDRIVE User's Manual F-3

F.3 Opening The DAQ-1201/1202

F.3.1 Using the DAQ-1201/1202 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter. In order to open a DAQ-1201/1202, the application program
must include DAQ1200.H. In addition, the constant PROCEDURE must
be replaced by the DAQ1200 (exactly and without quotes) and the
device_type variable must be defined as "DAQ-1201" for a DAQ-1201
adapter or "DAQ-1202" for a DAQ-1202 adapter.

#include "daqdrive.h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1200.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-1201";
char *config_file = "c:\\daq1200\\daq-1201.dat";

/***** Open the daq-1201. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1200, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

F-4

F.3.2 Using the DAQ-1201/1202 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The TSR version of DaqOpenDevice is intended for
DOS applications that interface to the memory resident (TSR) version of
the DAQDRIVE drivers.

Each hardware device supported by DAQDRIVE has been assigned a
unique TSR_number value to be used with the DaqOpenDevice
procedure. In order to open a DAQ-1201/1202, the TSR_number variable
must be set to the value F004 hexadecimal (61, 444 decimal) and the
device_type variable must be defined as "DAQ1201" for a DAQ-1201
adapter or "DAQ1202" for a DAQ-1202 adapter.

DAQDRIVE User's Manual F-5

unsigned short DaqOpenDevice(unsinged short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

#include "daqdrive.h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf004;
char *device_type = "daq-1201";
char *config_file = "c:\\daq1200\\daq-1201.dat";

/***** Open the daq-1201. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

F.3.3 Using the DAQ-1201/1202 with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

In order to open a DAQ-1201/1202, the DLL_name variable must specify
the DAQ-1201/1202 dynamic link library (DAQ1200.DLL) and the
device_type variable must be defined as "DAQ-1201" for a DAQ-1201
adapter or "DAQ-1202" for a DAQ-1202 adapter.

#include "daqdrive.h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-1202";
char *config_file = "c:\\DAQ1200\\DAQ-1202.dat";
char *DLL_name = "c:\\windows\\system\\DAQ1200.dll";

/***** Open the DAQ1202. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

F-6

F.4 Analog Input

The DAQ-1201/1202 supports analog input requests with the following
restrictions:

channel_array_ptr - Up to 512 channels array is supported.

trigger_source - INTERNAL_TRIGGER, TTL_TRIGGER, and
ANALOG_TRIGGER sources are supported.

trigger_channel - trigger_channel MUST equal the first channel in the
channel list.

trigger_voltage - The trigger voltage must be within the valid analog
input range of trigger_channel.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - sample_rate must be in the range 2.33e-5 Hz to 400
KHz (4e5).

calibration - Only the NO_CALIBRATION selection is supported.

F.5 Analog Output

The DAQ-1201/1202 supports analog output requests with the following
restrictions:

array_length - only single channel operations are supported.
Therefore array_length must equal 1.

trigger_source - Only the INTERNAL_TRIGGER source is
supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - The minimum value of sample_rate is 38.15Hz. The
maximum value of sample_rate is depending on the
speed of the computer used.

calibration - Only the NO_CALIBRATION selection is supported.

DAQDRIVE User's Manual F-7

F.6 Digital Input

The DAQ-1201/1202 supports digital input requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is
supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

F.7 Digital Output

The DAQ-1201/1202 supports digital output requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

F-8

Appendix G: DAQP-12 and DAQP-16

G.1 Distribution Software

G.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQP-12 (or
DAQP-16, or both) cards, the application must be linked with the
appropriate DAQDRIVE library and one of the following DAQP libraries:

For Microsoft Visual C/C++

DAQP_CS.LIB - small model DAQP library
DAQP_CM.LIB - medium model DAQP library
DAQP_CC.LIB - compact model DAQP library
DAQP_CL.LIB - large model DAQP library

For Borland C/C++

DAQP_BS.LIB - small model DAQP library
DAQP_BM.LIB - medium model DAQP library
DAQP_BC.LIB - compact model DAQP library
DAQP_BL.LIB - large model DAQP library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DAQP.H installed into
the DAQDRIVE\C_LIBS directory. This file defines the "open" procedure
for the C library version of the DAQP driver.

DAQDRIVE User's Manual G-1

G.1.2 Creating DOS Applications Using the TSR Driver

Before running a DAQP-12 (or DAQP-16) application that uses the TSR
driver, the user must first load the DAQDRIVE TSR as discussed in the
DAQDRIVE User's Manual. Once the DAQDRIVE TSR installed, the user
may then install the DAQP TSR driver with the command line:

DAQPTSR

This file, DAQPTSR.EXE, is installed into the DAQDRIVE\TSR directory
by the DAQDRIVE installation program.

When the DAQP TSR driver is executed, it will search for the DAQDRIVE
TSR in memory and install itself on the same software interrupt. If the
DAQDRIVE TSR is not loaded in memory, an error will be reported and
the DAQP TSR driver will not be installed.

G.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DAQP-12 (or DAQP-16, or both) cards is executed, it must be able to
dynamically link to the DAQDRIVE and DAQP Dynamic Link Libraries
(DLLs). Windows searches for any required DLLs in the following
locations

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DAQPWIN.DLL are installed into the
WINDOWS\SYSTEM directoyr by the DAQDRIVE installation program.

G-2

G.2 Configuring The DAQP-12 / DAQP-16

Before DAQDRIVE can operate the DAQP-12 (or DAQP-16), a
configuration data file must be generated by the DAQDRIVE
configuration utility program to generate the corresponding configuration
data file (either DAQP-12.DAT or DAQP-16.DAT).

G.2.1 General Configuration

The DAQP-12's (or DAQP-16's) base address and interrupt level must be
defined in the general configuration window of the configuration utility.
If the base address is set to 0, DAQDRIVE will obtain the DAQP-12's (or
DAQP-16's) base address and interrupt level from the PCMCIA Card and
Socket Services software.

NOTE: To operate in auto-configuration mode, the system must have
the DAQP Client Driver (the same one for both DAQP-12 and
DAQP-16) and a version of Card and Socket Services software
installed.

G.2.2 A/D Converter Configuration

For both DAQP-12 and DAQP-16, the A/D input channels are always
bipolar. The differential or single-ended option can be selected with the
configuration utility. The gains (1, 2, 4, and 8) for both cards are truly
programmable.

G.2.3 Digital I/O Configuration

Both DAQP-12 and DAQP-16, have 4 bits of digital input and 4 bits for
digital output. The default grouping is taking the 4 digital output bits as
channel 0 and the 4 digital input bits as channel 1.

G.2.4 Timer Configuration

Neither DAQP-12 or DAQP-16 has any user-definable timer parameters.

DAQDRIVE User's Manual G-3

G.3 Opening The DAQP-12 / DAQP-16

G.3.1 Using the DAQP-12 / DAQP-16 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter.

G.3.1.1 Using the DAQP-12 with the C Libraries

In order to open a DAQP-12, the application program must include
DAQP.H. In addition, the constant PROCEDURE must be replaced by
DAQP (exactly and without quotes) and the device_type variable must be
defined as "DAQP-12".

#include "daqdrive .h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " DAQP-12 ";
char *config_file = " daqp-12.dat ";

/***** Open the DAQP-12. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP , &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

G-4

G.3.1.2 Using the DAQP-16 with the C Libraries
In order to open a DAQP-16, the application program must include
DAQP.H. In addition, the constant PROCEDURE must be replaced by
DAQP(exactly and without quotes) and the device_type variable must be
defined as "DAQP-16".

#include "daqdrive .h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQP-16";
char *config_file = " daqp-16.dat ";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual G-5

G.3.2 Using the DAQP-12 / DAQP-16 with the DOS TSR Driver

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The DOS TSR version of DaqOpenDevice is
intended for DOS applications that interface to the "Terminate & Stay
memory-Resident" (TSR) version of the DAQDRIVE libraries.

unsigned short DaqOpenDevice(unsigned short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

Each device supported by DAQDRIVE has been assigned a unique
TSR_number value to be used with the DaqOpenDevice procedure. In
order to open a DAQP-12 or DAQP-16 card, the TSR_number variable
must be set to the value F005 hexadecimal (61,445 decimal). The
device_type variable should be defined as either "DAQP-12" or "DAQP-16
" depending on the hardware in use.

G.3.2.1 Opening DAQP-12 with the DOS TSR Driver
The following example C code opens a DAQP-12 with the DOS TSR
driver:

#include "daqdrive .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf005;
char *device_type = " DAQP-12 ";
char *config_file = " daqp-12.dat ";

/***** Open the DAQP-12. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

G-6

G.3.2.2 Opening DAQP-16 with the DOS TSR Driver
The following example C code opens a DAQP-16 with the DOS TSR
driver:

#include "daqdrive .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf005;
char *device_type = "DAQP-16";
char *config_file = " daqp-16.dat ";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual G-7

G.3.3 Using the DAQP-12 / DAQP-16 with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

G.3.3.1 Opening the DAQP-12 with the Windows DLLs

In order to open a DAQP-12, the DLL_name variable must specify the
DAQP dynamic link library (DAQPWIN.DLL) and the device_type
variable must be defined as "DAQP-12".

#include "daqdrive .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " DAQP-12 ";
char *config_file = " daqp-12.dat ";
char *DLL_name = "daqpwin.dll";

/***** Open the DAQP-12. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

G-8

G.3.3.2 Opening the DAQP-16 with the Windows DLLs

In order to open a DAQP-16, the DLL_name variable must specify the
DAQP dynamic link library (DAQPWIN.DLL) and the device_type
variable must be defined as "DAQP-16".

#include "daqdrive .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " DAQP-16 ";
char *config_file = " daqp-16.dat ";
char *DLL_name = "daqpwin.dll";

/***** Open the DAQP-16. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual G-9

G.4 Analog Input

Both DAQP-12 and DAQP-16 support analog input requests with the
following restrictions:

channel_array_ptr - requests operating on two or more analog input
channels. There is no restrictions on the number of
times an analog input channel may appear in the
channel list.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER
sources are supported. If the TTL_TRIGGER is
selected, the trigger signal must be applied on the
DAQP-12's external trigger (shared with digital input
bit 0) input.

IO_mode - only the FOREGROUND_CPU and
BACKGROUND_IRQ data transfer modes are
supported. DMA modes are NOT supported.

clock_source - both INTERNAL_CLOCK and EXTERNAL_CLOCK
sources are supported. If the external clock is
selected, the clock input has to be introduced from
the external clock (shared with digital input bit 2)
input. The minimum clock pulse width is 200 ns (or
the maximum clock frequency is 5 MHz). There is no
limit on the maximum clock width (or the minimum
clock frequency).

sample_rate - sample_rate must NOT be over 100 kHz (100e3). If
the internal clock is used, the minimum sampling
rate is 0.06 Hz. The minimum sampling rate will be
the external clock frequency divided by 16,777,215.

calibration - only the NO_CALIBRATION selection is supported.

When the data acquisition is in background mode, the DAQDRIVE low level
driver will select EOS (end of scan) interrupt if the data flow is less than
1000 samples per second (sampling rate times number of channels in the
scan list), otherwise it uses the FIFO threshold interrupt. The FIFO
thershold will always be set as an integer multiple of the scan length, close
enough to the half full level (either 256 or 1024 samples, depending on the
card FIFO depth).

G-10

G.5 Analog Output

Neither DAQP-12 nor DAQP-16 has any analog output channels. All
analog output requests will return with a function not supported error.

G.6 Digital Input

EitherDAQP-12 or DAQP-16 only supports single scan digital input
requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is
supported.

G.7 Digital Output

Either DAQP-12 or DAQP-16 only supports single scan digital output
requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is
supported.

DAQDRIVE User's Manual G-11

(This page intentionally left blank.)

G-12

Appendix H: DA8P-12B

H.1 Distribution Software

H.1.1 Creating DOS Applications Using The C Libraries

To generate an application that controls one or more DA8P-12Bs, the
application must be linked with the appropriate DAQDRIVE library and
one of the following DA8P-12B libraries:

For Microsoft Visual C/C++

v DA8P12CS.LIB - small model DA8P-12B library
v DA8P12CM.LIB - medium model DA8P-12B library
v DA8P12CC.LIB - compact model DA8P-12B library
v DA8P12CL.LIB - large model DA8P-12B library

For Borland C/C++

v DA8P12BS.LIB - small model DA8P-12B library
v DA8P12BM.LIB - medium model DA8P-12B library
v DA8P12BC.LIB - compact model DA8P-12B library
v DA8P12BL.LIB - large model DA8P-12B library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DA8P-12.H installed
into the DAQDRIVE\C_LIBS directory. This file defines the "open"
procedure for the C library version of the DA8P-12B driver.

DAQDRIVE User's Manual H-1

H.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DA8P-12B application that uses the TSR drivers, the user
must first load the DAQDRIVE TSR as discussed in the DAQDRIVE User's
Manual. Once the DAQDRIVE TSR is installed, the user can install the
DA8P-12B TSR with the command line:

DA8P-12

This file, DA8P-12.EXE, is installed into the DAQDRIVE\TSR directory by
the DAQDRIVE installation program.

When the DA8P-12B TSR driver is executed, it will search for the
DAQDRIVE TSR in memory and install itself on the same software
interrupt. If the DAQDRIVE TSR is not loaded in memory, an error will
be reported and the DA8P-12B driver will not be installed.

H.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DA8P-12Bs is executed, it must be able to dynamically link to the
DAQDRIVE and DA8P-12B Dynamic Link Libraries (DLLs). Windows
searches for any required DLLs in the following locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DA8P-12.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

H-2

H.2 Configuring The DA8P-12B

Before DAQDRIVE can operate the DA8P-12B, a configuration data file
must be generated by the DAQDRIVE configuration utility.

H.2.1 General Configuration

The DA8P-12B's base address and interrupt level must be defined in the
general configuration window of the configuration utility. If the base
address is set to 0, DAQDRIVE will obtain the DA8P-12B's base address
and interrupt level from the PCMCIA Card and Socket Services software.

NOTE: To operate in auto-configuration mode, the system must have
the DA8P-12B's Client Driver and a version of Card and Socket
Services software installed.

H.2.2 D/A Converter Configuration

The DA8P-12B does not have any user-definable D/A converter
parameters. The DA8P-12BB is factory configured for 8 bipolar outputs.
The DA8P-12BU is factory configured for 8 unipolar outputs.

H.2.3 Digital I/O Configuration

The DA8P-12B has 8 bits of digital I/O which may be grouped into any
combination of logical channels. The logical channel assignments begin
with digital I/O bit 0 and continue through digital I/O bit 7. After all of
the logical channels have been defined, each channel may be individually
configured for input, output, or input/output modes.

H.2.4 Timer Configuration

The DA8P-12B does not have any user-definable timer parameters.

DAQDRIVE User's Manual H-3

H.3 Opening The DA8P-12B

H.3.1 Using the DA8P-12B with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter. In order to open a DA8P-12B, the application program must
include DA8P-12.H. In addition, the constant PROCEDURE must be
replaced by DA8P-12 (exactly and without quotes) and the device_type
variable must be defined as "DA8P-12BB" for a bipolar adapter or
"DA8P-12BU" for a unipolar adapter.

#include "daqdrive .h"
#include "daqopenc.h"
#include "userdata.h"
#include "da8p-12.h "

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " DA8P-12B B";
char *config_file = " da8p-12b.dat ";

/***** Open the DA8P-12B . *****/

logical_device = 0;
status = DaqOpenDevice(DA8P-12 , &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

H-4

H.3.2 Using the DA8P-12B with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The TSR version of DaqOpenDevice is intended for
DOS applications that interface to the memory resident (TSR) version of
the DAQDRIVE drivers.

unsigned short DaqOpenDevice(unsigned short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

Each hardware device supported by DAQDRIVE has been assigned a
unique TSR_number value to be used with the DaqOpenDevice
procedure. In order to open a DA8P-12B, the TSR_number variable must
be set to the value F006 hexadecimal (61, 446 decimal) and the device_type
variable must be defined as "DA8P-12BB" for a bipolar adapter or "
DA8P-12BU" for a unipolar adapter.

#include "DAQDRIVE .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf006;
char *device_type = " DA8P-12B B";
char *config_file = " da8p-12b.dat ";

/***** Open the DA8P-12B . *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual H-5

H.3.3 Using the DA8P-12B with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

In order to open a DA8P-12B, the DLL_name variable must specify the
DA8P-12Bdynamic link library (DA8P-12.DLL) and the device_type
variable must be defined as "DA8P-12BB" for a bipolar adapter or "
DA8P-12BU" for a unipolar adapter.

#include "DAQDRIVE .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " DA8P-12B B";
char *config_file = " da8p-12b.dat ";
char *DLL_name = "c:\\windows\\system\\ da8p-12.dll ";

/***** Open the DA8P-12B . *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

H-6

H.4 Analog Input

The DA8P-12B does not support any analog input functions. All analog
input requests will return with a function not supported error.

H.5 Analog Output

The DA8P-12B supports analog output requests with the following
restrictions:

channel_array_ptr - requests operating on more than one analog output
channel use the DA8P-12B's simultaneous output
mode. This restricts channels to a single appearance
in the channel list.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER
sources are supported. If the TTL_TRIGGER is
selected for a single channel request, the trigger
signal must be applied on the DA8P-12B's external
event input. If the TTL_TRIGGER is specified for a
multiple channel request, the trigger signal must be
applied on the external load control input.

trigger_slope - only RISING_EDGE TTL triggers are supported.

IO_mode - only the FOREGROUND_CPU and
BACKGROUND_IRQ data transfer modes are
supported.

clock_source - only the INTERNAL_CLOCK source is supported.

sample_rate - sample_rate must be in the range 500 nHz (500e-9) to
100 KHz (100e3).

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE User's Manual H-7

H.6 Digital Input

The DA8P-12B supports digital input requests with the following
restrictions:

channel_array_ptr - a channel may appear only once in the channel list.

number_of_scans - only one value may be input from each channel per
request. Therefore, number_of_scans must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU mode is supported.

H.7 Digital Output

The DA8P-12B supports digital output requests with the following
restrictions:

channel_array_ptr - a channel may appear only once in the channel list.

number_of_scans - only one value may be output to each channel per
request. Therefore, number_of_scans must equal 1.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU mode is supported.

H-8

Appendix I: DAQ-1101/1102

I.1 Distribution Software

I.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQ1101/1102s, the
application must be linked with the appropriate DAQDRIVE library and
one of the following DAQ-1101/1102 libraries:

For Microsoft Visual C/C++

v DQ1100MS.LIB - small model DAQ-1100 library
v DQ1100MM.LIB - medium model DAQ-1100 library
v DQ1100MC.LIB - compact model DAQ-1100 library
v DQ1100ML.LIB - large model DAQ-1100 library

For Borland C/C++

v DQ1100BS.LIB - small model DAQ-1100 library
v DQ1100BM.LIB - medium model DAQ-1100 library
v DQ1100BC.LIB - compact model DAQ-1100 library
v DQ1100BL.LIB - large model DAQ-1100 library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DAQ1100.H installed
into the DAQDRIVE\C_LIBS directory. This file defines the "open"
procedure for the C library version of the DAQ-1100 driver.

DAQDRIVE User's Manual I-1

I.1.2 Creating DOS Applications Using The TSR Drivers

Before running a DAQ1101/1102 application that uses the TSR drivers,
the user must first load the DAQDRIVE TSR as discussed in the
DAQDRIVE User's Manual. Once the DAQDRIVE TSR is installed, the
user can install the DAQ-1100 TSR with the command line:

DAQ-1100

This file, DAQ-1100.EXE, is located in the \TSR directory of the
DAQ-1101/1102 distribution diskette.

When the DAQ-1100 TSR driver is executed, it will search for the
DAQDRIVE TSR in memory and install itself on the same software
interrupt. If the DAQDRIVE TSR is not loaded in memory, an error will
be reported and the DAQ-1100 driver will not be installed.

I.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DAQ1101/1102s is executed, it must be able to dynamically link to the
DAQDRIVE and DAQ-1100 Dynamic Link Libraries (DLLs). Windows
searches for any required DLLs in the following locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DAQ1100.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

I-2

I.2 Configuring The DAQ-1101/1102

Before DAQDRIVE can operate the DAQ-1101/1102, a configuration data
file must be generated by the DAQDRIVE configuration utility program
DAQCFGW.EXE for Microsoft Windows.

I.2.1 General Configuration

The DAQ-1101/1102's base address, interrupt level and DMA channels
must be defined in the general configuration window of the configuration
utility. The base address range is from 0 to 7FF0H with 10H interval. The
base address value should reflect the DIP switch setting of SW1 and SW2
(refer to the DAQ-1101/1102 Hardware Manual).

I.2.2 A/D Converter Configuration

The A/D converter parameters in DAQ-1101/1102 are device type
(Bipolar or Unipolar), differential or single-ended.

I.2.3 D/A Converter Configuration

The DAQ-1101/1102's D/A converter parameters are device type (bipolar
or unipolar), reference source (internal or external), reference voltage, and
gain (gain of 1 or 2). These parameters should reflect the jumper settings
of J4 and J5 of the board (refer to the DAQ-1101/1102 Hardware Manual).

I.2.4 Digital I/O Configuration

The DAQ-1101/1102 has 32 bits of digital I/O. The first 24 bits are Port A,
Port B, and Port C which are 8255A mode 0 equivalent. In the I/O port
portion of the configuration window, the first 4 bits are fixed output and
last 4 bits are fixed input. The 32 bits of digital I/O may be grouped into
any combination of logical channels as long as the channels are in the
same group type. The group type are Port A, Port B, Port C bit 0 to 3, Port
C bit 4 to 7, 4-bit fixed input and 4-bit fixed output. The logical channel
assignments begin with digital I/O bit 0 and continue through digital I/O
bit 31.

I.2.5 Timer Configuration

The DAQ-1101/1102 does not have any user-definable timer parameters.

DAQDRIVE User's Manual I-3

I.3 Opening The DAQ-1101/1102

I.3.1 Using the DAQ-1101/1102 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter. In order to open a DAQ-1101/1102, the application program
must include DAQ1100.H. In addition, the constant PROCEDURE must
be replaced by the DAQ1100 (exactly and without quotes) and the
device_type variable must be defined as "DAQ-1101" for a DAQ-1101
adapter or "DAQ-1102" for a DAQ-1102 adapter.

#include "DAQDRIVE .h"
#include "daqopenc.h"
#include "userdata.h"
#include "daq1100.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "daq-1101";
char *config_file = "c:\\daq1100\\daq-1101.dat";

/***** Open the daq-1101. *****/

logical_device = 0;
status = DaqOpenDevice(DAQ1100, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

I-4

I.3.2 Using the DAQ-1101/1102 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The TSR version of DaqOpenDevice is intended for
DOS applications that interface to the memory resident (TSR) version of
the DAQDRIVE drivers.

Each hardware device supported by DAQDRIVE has been assigned a
unique TSR_number value to be used with the DaqOpenDevice
procedure. In order to open a DAQ-1101/1102, the TSR_number variable
must be set to the value F007 hexadecimal (61, 447 decimal) and the
device_type variable must be defined as "DAQ1101" for a DAQ-1101
adapter or "DAQ1102" for a DAQ-1102 adapter.

DAQDRIVE User's Manual I-5

unsigned short DaqOpenDevice(unsinged short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

#include "DAQDRIVE .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf007;
char *device_type = "daq-1101";
char *config_file = "c:\\daq1100\\daq-1101.dat";

/***** Open the daq-1101. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

I.3.3 Using the DAQ-1101/1102 with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

In order to open a DAQ-1101/1102, the DLL_name variable must specify
the DAQ-1101/1102 dynamic link library (DAQ1100.DLL) and the
device_type variable must be defined as "DAQ-1101" for a DAQ-1101
adapter or "DAQ-1102" for a DAQ-1102 adapter.

#include "DAQDRIVE .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQ-1102";
char *config_file = "c:\\DAQ1100\\DAQ-1102.dat";
char *DLL_name = "c:\\ WINDOWS\\SYSTEM \\DAQ1100.dll";

/***** Open the DAQ1102. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

I-6

I.4 Analog Input

The DAQ-1101/1102 supports analog input requests with the following
restrictions:

channel_array_ptr - Up to 256 channels array is supported. In the
channel array, the channel numbers must be in
sequential order from start channel to stop channel.

trigger_source - INTERNAL_TRIGGER, TTL_TRIGGER, and
ANALOG_TRIGGER sources are supported.

trigger_channel - trigger_channel MUST equal the first channel in the
channel list.

trigger_voltage - The trigger voltage must be within the valid analog
input range of trigger_channel.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - If the number of expansion board is 0, the scan speed
is 2.7us from channel to channel, and the
sample_rate must be in the range 2.33e-5 Hz to 333
Khz(3.33e5). Otherwise, the scan speed may be
2.7us, 10us, or 20.1us, deppending on the slowest
signal condirioner in the expansion board.

calibration - Only the NO_CALIBRATION selection is supported.

DAQDRIVE User's Manual I-7

I.5 Analog Output

The DAQ-1101/1102 supports analog output requests with the following
restrictions:

array_length - only single channel operations are supported.
Therefore array_length must equal 1.

trigger_source - Only the INTERNAL_TRIGGER source is
supported.

clock_source - Only the INTERNAL_CLOCK source is supported.

sample_rate - The minimum value of sample_rate is 38.15Hz. The
maximum value of sample_rate is depending on the
speed of the computer used.

calibration - Only the NO_CALIBRATION selection is supported.

I-8

I.6 Digital Input

The DAQ-1101/1102 supports digital input requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is
supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

I.7 Digital Output

The DAQ-1101/1102 supports digital output requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

DAQDRIVE User's Manual I-9

(This page intentionally left blank.)

I-10

Appendix M: IOP-241

M.1 Distribution Software

M.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more IOP-241s, the
application must be linked with the appropriate DAQDRIVE library and
one of the following IOP-241 libraries:

For Microsoft Visual C/C++

v IOP241MS.LIB - small model IOP-241 library
v IOP241MM.LIB - medium model IOP-241 library
v IOP241MC.LIB - compact model IOP-241 library
v IOP241ML.LIB - large model IOP-241 library

For Borland C/C++

v IOP241BS.LIB - small model IOP-241 library
v IOP241BM.LIB - medium model IOP-241 library
v IOP241BC.LIB - compact model IOP-241 library
v IOP241BL.LIB - large model IOP-241 library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file IOP241.H installed into
the DAQDRIVE\C_LIBS directory. This file defines the "open" procedure
for the C library version of the IOP-241 driver.

DAQDRIVE User's Manual M-1

M.1.2 Creating DOS Applications Using The TSR Drivers

Before running an IOP-241 application that uses the TSR drivers, the user
must first load the DAQDRIVE TSR as discussed in the DAQDRIVE User's
Manual. Once the DAQDRIVE TSR is installed, the user can install the
IOP-241 TSR with the command line:

IOP-241

This file, IOP-241.EXE, is installed into the DAQDRIVE\TSR directory by
the DAQDRIVE installation program.

When the IOP-241 TSR driver is executed, it will search for the
DAQDRIVE TSR in memory and install itself on the same software
interrupt. If the DAQDRIVE TSR is not loaded in memory, an error will
be reported and the IOP-241 driver will not be installed.

M.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more IOP-241
s is executed, it must be able to dynamically link to the DAQDRIVE and
IOP-241 Dynamic Link Libraries (DLLs). Windows searches for any
required DLLs in the following locations:

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and IOP-241.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

M-2

M.2 Configuring The IOP-241

Before DAQDRIVE can operate the IOP-241, a configuration data file must
be generated by the DAQDRIVE configuration utility program
DAQCFGW.EXE for Microsoft Windows.

M.2.1 General Configuration

The IOP-241's base address must be defined in the general configuration
window of the configuration utility. The base address range is from 0 to
3f8H with 8 interval. The defined card base address should be set using
the IOP-241 Enabler or Client Driver (refer to theIOP-241 Hardware
Manual).

M.2.2 Digital I/O Configuration

The IOP-241 has 24 bits of digital I/O. The 24 bits are grouped into three
8-bit ports. Each bit may be programmed as either input or output.. The
24 bits of digital I/O may be grouped into any combination of logical
channels as long as the channels are in the same group with the same
input or output type. The logical channel assignments begin with digital
I/O bit 0 and continue through digital I/O bit 23.

DAQDRIVE User's Manual M-3

M.3 Opening The IOP-241

M.3.1 Using the IOP-241 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter. In order to open a IOP-241, the application program must
include IOP241.H. In addition, the constant PROCEDURE must be
replaced by the IOP241(exactly and without quotes) and the device_type
variable must be defined as "IOP-241" for a IOP-241 adapter.

#include "daqdrive .h"
#include "daqopenc.h"
#include "userdata.h"
#include "iop241.h "

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " IOP-241 ";
char *config_file = "c:\\ iop-241 \\iop-241.dat ";

/***** Open the IOP-241 . *****/

logical_device = 0;
status = DaqOpenDevice(IOP241 , &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

M-4

M.3.2 Using the IOP-241 with the TSR drivers

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The TSR version of DaqOpenDevice is intended for
DOS applications that interface to the memory resident (TSR) version of
the DAQDRIVE drivers.

Each hardware device supported by DAQDRIVE has been assigned a
unique TSR_number value to be used with the DaqOpenDevice
procedure. In order to open a IOP-241, the TSR_number variable must be
set to the value F00B hexadecimal (61, 451 decimal) and the device_type
variable must be defined as "IOP-241" for a IOP-241 adapter.

DAQDRIVE User's Manual M-5

unsigned short DaqOpenDevice(unsinged short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

#include "daqdrive .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xf00b;
char *device_type = " IOP-241 ";
char *config_file = "c:\\ iop-241 \\iop-241.dat ";

/***** Open the IOP-241 . *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

M.3.3 Using the IOP-241 with Windows

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

In order to open a IOP-241, the DLL_name variable must specify the
IOP-241 dynamic link library (IOP-241.DLL) and the device_type variable
must be defined as "IOP-241" for a IOP-241 adapter.

#include "daqdrive .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = " IOP-241 ";
char *config_file = "c:\\ iop-241 \\iop-241.dat ";
char *DLL_name = "c:\\ windows\system\\ iop-241.dll ";

/***** Open the IOP-241 . *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

M-6

M.4 Digital Input

The IOP-241 supports digital input requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER source is supported.

IO_mode - Only the FOREGROUND_CPU data transfer mode is
supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

M.5 Digital Output

The IOP-241 supports digital output requests with the following
restrictions:

channel_array_ptr - A channel may only appear once in the channel list.

trigger_source - Only the INTERNAL_TRIGGER is supported

IO_mode - Only the FOREGROUND_CPU is supported.

number_of_scans - Only single point operations are supported,
therefore, number_of_scans must equal 1.

DAQDRIVE User's Manual M-7

(This page intentionally left blank.)

M-8

Appendix N: DAQP-208 and DAQP-308

N.1 Distribution Software

N.1.1 Creating DOS Applications Using the C Libraries

To generate an application that controls one or more DAQP-208(or
DAQP-308, or both) cards, the application must be linked with the
appropriate DAQDRIVE library and one of the following DAQP libraries:

For Microsoft Visual C/C++

DAQP_CS.LIB - small model DAQP library
DAQP_CM.LIB - medium model DAQP library
DAQP_CC.LIB - compact model DAQP library
DAQP_CL.LIB - large model DAQP library

For Borland C/C++

DAQP_BS.LIB - small model DAQP library
DAQP_BM.LIB - medium model DAQP library
DAQP_BC.LIB - compact model DAQP library
DAQP_BL.LIB - large model DAQP library

The selected libraries MUST match the compiler and memory model
specified for the application program. These libraries are installed into the
DAQDRIVE\C_LIBS directory by the DAQDRIVE installation program.

The application program must also include the file DAQP.H installed into
the DAQDRIVE\C_LIBS directory. This file defines the "open" procedure
for the C library version of the DAQP driver.

DAQDRIVE User's Manual N-1

N.1.2 Creating DOS Applications Using the TSR Driver

Before running a DAQP-208(or DAQP-308) application that uses the TSR
driver, the user must first load the DAQDRIVE TSR as discussed in the
DAQDRIVE User's Manual. Once the DAQDRIVE TSR installed, the user
may then install the DAQP TSR driver with the command line:

DAQPTSR

This file, DAQPTSR.EXE, is installed into the DAQDRIVE\TSR directory
by the DAQDRIVE installation program.

When the DAQP TSR driver is executed, it will search for the DAQDRIVE
TSR in memory and install itself on the same software interrupt. If the
DAQDRIVE TSR is not loaded in memory, an error will be reported and
the DAQP TSR driver will not be installed.

N.1.3 Creating Windows Applications

When a Microsoft Windows application that controls one or more
DAQP-208(or DAQP-308, or both) cards is executed, it must be able to
dynamically link to the DAQDRIVE and DAQP Dynamic Link Libraries
(DLLs). Windows searches for any required DLLs in the following
locations

1. the current directory

2. the Windows directory (directory containing WIN.COM)

3. the Windows\System directory (directory containing (GDI.EXE)

4. the directory of the application program

5. all directories specified by the PATH environment variable

6. all directories mapped to network drives

The files DAQDRIVE.DLL and DAQPWIN.DLL are installed into the
WINDOWS\SYSTEM directory by the DAQDRIVE installation program.

N-2

N.2 Configuring The DAQP-208/ DAQP-308

Before DAQDRIVE can operate the DAQP-208(or DAQP-308), a
configuration data file must be generated by the DAQDRIVE
configuration utility program to generate the corresponding configuration
data file (either DAQP-208.DAT or DAQP-308.DAT).

N.2.1 General Configuration

The DAQP-208's (or DAQP-308's) base address and interrupt level must
be defined in the general configuration window of the configuration
utility. If the base address is set to 0, DAQDRIVE will obtain the
DAQP-208's (or DAQP-308's) base address and interrupt level from the
PCMCIA Card and Socket Services software.

NOTE: To operate in auto-configuration mode, the system must have
the DAQP Client Driver (the same one for bothDAQP-208 and
DAQP-308) and a version of Card and Socket Services software
installed.

N.2.2 A/D Converter Configuration

For both DAQP-208 and DAQP-308, the A/D input channels are always
bipolar. The differential or single-ended option can be selected with the
configuration utility. The gains (1, 2, 4, and 8) for both cards are truly
programmable.

N.2.3 Digital I/O Configuration

Both DAQP-208 and DAQP-308 have 4 bits of digital input and 4 bits for
digital output. The default grouping is taking the 4 digital output bits as
channel 0 and the 4 digital input bits as channel 1.

N.2.4 Timer Configuration

Neither DAQP-208 nor DAQP-208 has any user-definable timer
parameters.

N.2.5 D/A Converter Configuration

Neither DAQP-208 nor DAQP-208 has any user-definable D/A converter
parameters.

DAQDRIVE User's Manual N-3

N.3 Opening The DAQP-208/ DAQP-308

N.3.1 Using the DAQP-208/ DAQP-308 with the C libraries

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The C library version of DaqOpenDevice is
intended for DOS applications that are written in C and linked directly to
the DAQDRIVE libraries.

unsigned short DaqOpenDevice(PROCEDURE,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

This version of DaqOpenDevice is implemented as a C macro and uses the
token pasting operator to create a unique "open" command for the desired
adapter.

N.3.1.1 Using the DAQP-208 with the C Libraries

In order to open a DAQP-208, the application program must include
DAQP.H. In addition, the constant PROCEDURE must be replaced by
DAQP (exactly and without quotes) and the device_type variable must be
defined as "DAQP-208".

#include "daqdrive .h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQP-208";
char *config_file = " daqp-208.dat ";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

N-4

N.3.1.2 Using the DAQP-308 with the C Libraries
In order to open a DAQP-308, the application program must include
DAQP.H. In addition, the constant PROCEDURE must be replaced by
DAQP (exactly and without quotes) and the device_type variable must be
defined as "DAQP-308".

#include "daqdrive .h"
#include "daqopenc.h"
#include "userdata.h"
#include "daqp.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQP-308";
char *config_file = " daqp-308.dat ";

/***** Open the DAQP-308. *****/

logical_device = 0;
status = DaqOpenDevice(DAQP, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual N-5

N.3.2 Using the DAQP-208/ DAQP-308 with the DOS TSR Driver

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The DOS TSR version of DaqOpenDevice is
intended for DOS applications that interface to the "Terminate & Stay
memory-Resident" (TSR) version of the DAQDRIVE libraries.

unsigned short DaqOpenDevice(unsigned short TSR_number,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

Each device supported by DAQDRIVE has been assigned a unique
TSR_number value to be used with the DaqOpenDevice procedure. In
order to open a DAQP-208 or DAQP-308 card, the TSR_number variable
must be set to the value F005 hexadecimal (61,452 decimal). The
device_type variable should be defined as "DAQP-208" forDAQP-208 and
“DAQP-308” for DAQP-308.

N.3.2.1 Opening DAQP-208 with the DOS TSR Driver
The following example C code opens a DAQP-208 with the DOS TSR
driver:

#include "daqdrive .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xF005;
char *device_type = "DAQP-208";
char *config_file = " daqp-208.dat ";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

N-6

N.3.2.2 Opening DAQP-308 with the DOS TSR Driver
The following example C code opens a DAQP-308 with the DOS TSR
driver:

#include "daqdrive .h"
#include "daqopent.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

unsigned short TSR_number = 0xF005;
char *device_type = "DAQP-308";
char *config_file = " daqp-308.dat ";

/***** Open the DAQP-308. *****/

logical_device = 0;
status = DaqOpenDevice(TSR_number, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual N-7

N.3.3 Using the DAQP-208/ DAQP-308 with the Windows DLLs

DaqOpenDevice is the only procedure that is implemented differently
depending upon the type of interface between DAQDRIVE and the
application program. The Windows DLL version of DaqOpenDevice is
intended for Windows applications that interface to the DAQDRIVE
dynamic link libraries (DLLs).

unsigned short DaqOpenDevice(char *DLL_name,
 unsigned short *logical_device,
 char *device_type,
 char *config_file)

N.3.3.1 Opening the DAQP-208 with the Windows DLLs

In order to open a DAQP-208, the DLL_name variable must specify the
DAQP dynamic link library (DAQPWIN.DLL) and the device_type
variable must be defined as "DAQP-208".

#include "daqdrive .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQP-208";
char *config_file = " daqp-208.dat ";
char *DLL_name = "daqpwin.dll";

/***** Open the DAQP-208. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

N-8

N.3.3.2 Opening the DAQP-308 with the Windows DLLs

In order to open a DAQP-308, the DLL_name variable must specify the
DAQP dynamic link library (DAQPWIN.DLL) and the device_type
variable must be defined as "DAQP-308".

#include "daqdrive .h"
#include "daqopenw.h"
#include "userdata.h"

unsigned short main()
{
unsigned short logical_device;
unsigned short status;

char *device_type = "DAQP-308";
char *config_file = " daqp-308.dat ";
char *DLL_name = "daqpwin.dll";

/***** Open the DAQP-308. *****/

logical_device = 0;
status = DaqOpenDevice(DLL_name, &logical_device, device_type, config_file);
if (status != 0)
 {
 printf("Error opening configuration file. Status code %d.\n",status);
 exit(status);
 }

DAQDRIVE User's Manual N-9

N.4 Analog Input

Both DAQP-208 and DAQP-308 support analog input requests with the
following restrictions:

channel_array_ptr - requests operating on two or more analog input
channels. There is no restrictions on the number of
times an analog input channel may appear in the
channel list.

trigger_source - only the INTERNAL_TRIGGER, TTL_TRIGGER and
ANALOG_TRIGGER sources are supported.

trigger_channel - trigger_channel MUST be the first channel in the
channel list.

trigger_voltage - The trigger voltage must be within the valid analog
input range of the trigger_channel.

IO_mode - only the FOREGROUND_CPU and
BACKGROUND_IRQ data transfer modes are
supported. DMA modes are NOT supported

clock_source - both INTERNAL_CLOCK and EXTERNAL_CLOCK
sources are supported. If the external clock is
selected, the clock input has to be introduced from
the external clock (shared with digital input bit 2)
input. The minimum clock pulse width is 200 ns (or
the maximum clock frequency is 5 MHz). There is no
limit on the maximum clock width (or the minimum
clock frequency).

sample_rate - sample_rate must NOT be over 100 kHz (100e3). If
the internal clock is used, the minimum sampling
rate is 0.06 Hz. The minimum sampling rate will be
the external clock frequency divided by 16,777,215.

calibration - only the NO_CALIBRATION selection is supported.

N-10

N.5 Analog Output

There are two D/A channels in DAQP-208 and DAQP-308. Both of them
support analog output requests with the following restrictions:

channel_array_ptr - If there are two channels in the list, they MUST be
different from each other.

trigger_source - only the INTERNAL_TRIGGER and TTL_TRIGGER
sources are supported.

trigger_slope - only the RISING_EDGE TTL trigger is supported.

IO_mode - only the FOREGROUNG_CPU and
BACKGROUNG_IRQ data transfer modes are
supported.

clock_source - both INTERNAL_CLOCK and EXTERNAL_CLOCK
sources are supported. If the external clock is
selected, the same restrictions will apply as decribeds
in the previous section (N.4, A/D input, clock
source)

sample_rate - sample_rate must NOT be over 100 kHz (100e3). If
the internal clock is used, the minimum sampling
rate is 15.3 Hz. The minimum sampling rate will be
the external clock frequency divided by 65,535.

calibration - only the NO_CALIBRATION selection is supported.

DAQDRIVE User's Manual N-11

N.6 Digital Input

Both DAQP-208 and DAQP-308 only support single scan digital input
requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is
supported.

N-12

N.7 Digital Output

Both DAQP-208 and DAQP-308 only support single scan digital output
requests with the following restrictions:

channel_array_ptr - a channel may only appear once in the channel list.

trigger_source - only the INTERNAL_TRIGGER source is supported.

IO_mode - only the FOREGROUND_CPU data transfer mode is
supported.

DAQDRIVE User's Manual N-13

